Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Res Sq ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38712032

RESUMEN

How macrophages in the tissue environment integrate multiple stimuli will depend on the genetic background of the host, but this is poorly understood. Here, we investigated C57BL/6 and BALB/c strain specific in vivo IL-4 activation of tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with a greater association of induced genes with super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling revealed BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated BL/6 TRMs demonstrated an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure compared to BALB/c TRMs, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS than naïve BL/6 TRMs. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeric mice indicated that transcriptional differences between BL/6 and BALB/c TRMs, and synergy between IL-4 and LPS, are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.

2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38712048

RESUMEN

Background & Aims: Despite increasing therapeutic options in the treatment of ulcerative colitis (UC), achieving disease remission remains a major clinical challenge. Nonresponse to therapy is common and clinicians have little guidance in selecting the optimal therapy for an individual patient. This study examined whether patient-derived materials could predict individual clinical responsiveness to the Janus kinase (JAK) inhibitor, tofacitinib, prior to treatment initiation. Method: In 48 patients with UC initiating tofacitinib, we longitudinally collected clinical covariates, stool, and colonic biopsies to analyze the microbiota, transcriptome, and exome variations associated with clinical responsiveness at week 24. We established patient-derived organoids (n = 23) to determine how their viability upon stimulation with proinflammatory cytokines in the presence of tofacitinib related to drug responsiveness in patients. We performed additional biochemical analyses of organoids and primary tissues to identify the mechanism underlying differential tofacitinib sensitivity. Results: The composition of the gut microbiota, rectal transcriptome, inflammatory biomarkers, and exome variations were indistinguishable among UC patients prior to tofacitinib treatment. However, a subset of patient-derived organoids displayed reduced sensitivity to tofacitinib as determined by the ability of the drug to inhibit STAT1 phosphorylation and loss of viability upon cytokine stimulation. Remarkably, sensitivity of organoids to tofacitinib predicted individual clinical patient responsiveness. Reduced responsiveness to tofacitinib was associated with decreased levels of the cationic transporter MATE1, which mediates tofacitinib uptake. Conclusions: Patient-derived intestinal organoids predict and identify mechanisms of individual tofacitinib responsiveness in UC. Specifically, MATE1 expression predicted clinical response to tofacitinib.

3.
Microbiome ; 12(1): 86, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730492

RESUMEN

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Asunto(s)
Diferenciación Celular , Clostridiales , Microbioma Gastrointestinal , Linfocitos T Reguladores , Trichuris , Animales , Linfocitos T Reguladores/inmunología , Ratones , Malasia , Clostridiales/aislamiento & purificación , Humanos , Ácidos Grasos Volátiles/metabolismo , Femenino , Tricuriasis/parasitología , Tricuriasis/inmunología , Tricuriasis/microbiología
4.
J Immunol ; 212(4): 632-644, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180236

RESUMEN

Distinct subsets of T lymphocytes express CX3CR1 under inflammatory conditions, but little is known about CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections. In this study, we used a fate-mapping mouse model to characterize CX3CR1+CD4+ T cells during both acute Nippostrongylus brasiliensis and chronic Schistosoma mansoni murine models of helminth infections, revealing CX3CR1+CD4+ T cells to be an activated tissue-homing subset with varying capacity for cytokine production. Tracking these cells over time revealed that maintenance of CX3CR1 itself along with a TH2 phenotype conferred a survival advantage in the inflamed tissue. Single-cell RNA sequencing analysis of fate-mapped CX3CR1+CD4+ T cells from both the peripheral tissue and the spleen revealed a considerable level of diversity and identified a distinct population of BCL6+TCF-1+PD1+CD4+ T cells in the spleen during helminth infections. Conditional deletion of BCL6 in CX3CR1+ cells resulted in fewer CX3CR1+CD4+ T cells during infection, indicating a role in sustaining CD4+ T cell responses to helminth infections. Overall, our studies revealed the behavior and heterogeneity of CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections and identified BCL6 to be important in their maintenance.


Asunto(s)
Linfocitos T CD4-Positivos , Helmintiasis , Schistosoma mansoni , Animales , Ratones , Linfocitos T CD4-Positivos/metabolismo , Helmintiasis/inmunología , Inflamación/metabolismo , Schistosoma mansoni/fisiología
5.
Sci Adv ; 9(51): eadh8310, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134275

RESUMEN

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.


Asunto(s)
Sistema Inmunológico , Conducta Social , Ratones , Animales , Fenotipo
6.
Sci Immunol ; 8(86): eadf8161, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37566678

RESUMEN

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Ratones , Humanos , Animales , COVID-19/metabolismo , SARS-CoV-2 , Macrófagos , Pulmón , Ratones Transgénicos
7.
Nat Immunol ; 24(9): 1552-1564, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524800

RESUMEN

The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.


Asunto(s)
FN-kappa B , Factor de Transcripción ReIA , FN-kappa B/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Linfocitos B/metabolismo , Sitios de Unión , Receptores de Antígenos/metabolismo
8.
J Immunol ; 211(5): 836-843, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466391

RESUMEN

Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage-tracing cells derived from CX3CR1+ precursors in mice during infection and profiling by single-cell RNA sequencing, in this study, we identify a cluster of BIRC5+ myeloid cells that expanded in the liver during chronic infection with either the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus. In the absence of tissue-damaging toxins, S. aureus infection does not elicit these BIRC5+ cells. Moreover, deletion of BIRC5 from CX3CR1-expressing cells results in improved survival during S. aureus infection. Hence the combination of single-cell RNA sequencing and genetic fate-mapping CX3CR1+ cells revealed a toxin-dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Ratones , Animales , Células Mieloides/patología , Análisis de la Célula Individual , Infecciones Estafilocócicas/microbiología
9.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333296

RESUMEN

Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.

10.
Sci Immunol ; 8(84): eadd6910, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352372

RESUMEN

The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component ß-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.


Asunto(s)
Granulocitos , Hematopoyesis , Ratones , Humanos , Animales , Neutrófilos , Candida albicans , Médula Ósea , Mamíferos
11.
Cell Host Microbe ; 31(4): 464-471, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37054669

RESUMEN

Just as mammals have coevolved with the intestinal bacterial communities that are part of the microbiota, intestinal helminths represent an important selective force on their mammalian host. The complex interaction between helminths, microbes, and their mammalian host is likely an important determinant of mutual fitness. The host immune system in particular is a critical interface with both helminths and the microbiota, and this crosstalk often determines the balance between tolerance and resistance against these widespread parasites. Hence, there are many examples of how both helminths and the microbiota can influence tissue homeostasis and homeostatic immunity. Understanding these processes at a cellular and molecular level is an exciting area of research that we seek to highlight in this review and that will potentially guide future treatment approaches.


Asunto(s)
Helmintiasis , Helmintos , Microbiota , Animales , Humanos , Tolerancia Inmunológica , Interacciones Huésped-Parásitos , Mamíferos
12.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36993484

RESUMEN

The relative and synergistic contributions of genetics and environment to inter-individual immune response variation remain unclear, despite its implications for understanding both evolutionary biology and medicine. Here, we quantify interactive effects of genotype and environment on immune traits by investigating three inbred mouse strains rewilded in an outdoor enclosure and infected with the parasite, Trichuris muris. Whereas cytokine response heterogeneity was primarily driven by genotype, cellular composition heterogeneity was shaped by interactions between genotype and environment. Notably, genetic differences under laboratory conditions can be decreased following rewilding, and variation in T cell markers are more driven by genetics, whereas B cell markers are driven more by environment. Importantly, variation in worm burden is associated with measures of immune variation, as well as genetics and environment. These results indicate that nonheritable influences interact with genetic factors to shape immune variation, with synergistic impacts on the deployment and evolution of defense mechanisms.

13.
Microbiome ; 10(1): 214, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476263

RESUMEN

BACKGROUND: While microbiomes in industrialized societies are well characterized, indigenous populations with traditional lifestyles have microbiomes that are more akin to those of ancient humans. However, metagenomic data in these populations remains scarce, and the association with soil-transmitted helminth infection status is unclear. Here, we sequenced 650 metagenomes of indigenous Malaysians from five villages with different prevalence of helminth infections. RESULTS: Individuals from villages with higher prevalences of helminth infections have more unmapped reads and greater microbial diversity. Microbial community diversity and composition were most strongly associated with different villages and the effects of helminth infection status on the microbiome varies by village. Longitudinal changes in the microbiome in response to albendazole anthelmintic treatment were observed in both helminth infected and uninfected individuals. Inference of bacterial population replication rates from origin of replication analysis identified specific replicating taxa associated with helminth infection. CONCLUSIONS: Our results indicate that helminth effects on the microbiota were highly dependent on context, and effects of albendazole on the microbiota can be confounding for the interpretation of deworming studies. Furthermore, a substantial quantity of the microbiome remains unannotated, and this large dataset from an indigenous population associated with helminth infections is a valuable resource for future studies. Video Abstract.


Asunto(s)
Metagenómica , Humanos
14.
bioRxiv ; 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36380767

RESUMEN

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses.

15.
Cell Rep ; 41(9): 111725, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450245

RESUMEN

Soil-transmitted intestinal worms known as helminths colonize over 1.5 billion people worldwide. Although helminth colonization has been associated with altered composition of the gut microbiota, such as increases in Clostridia, individual species have not been isolated and characterized. Here, we isolate and sequence the genome of 13 Clostridia from the Orang Asli, an indigenous population in Malaysia with a high prevalence of helminth infections. Metagenomic analysis of 650 fecal samples from urban and rural Malaysians confirm the prevalence of species corresponding to these isolates and reveal a specific association between Peptostreptococcaceae family members and helminth colonization. Remarkably, Peptostreptococcaceae isolated from the Orang Asli display superior capacity to promote the life cycle of whipworm species, including hatching of eggs from Trichuris muris and Trichuris trichiura. These findings support a model in which helminths select for gut colonization of microbes that support their life cycle.


Asunto(s)
Helmintos , Tricuriasis , Humanos , Animales , Trichuris , Firmicutes , Estadios del Ciclo de Vida
16.
mBio ; 13(5): e0174622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036514

RESUMEN

Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics. IMPORTANCE Cerebral malaria is a severe complication of Plasmodium falciparum infection that causes the loss of blood-brain barrier integrity and frequently results in death. Here, we compared the effect of P. falciparum-infected red blood cells and inflammatory cytokines, like TNF-α, in the loss of BBB integrity. We observed that while TNF-α induced a small increase in barrier permeability, P. falciparum-infected red blood cells led to a severe loss of barrier integrity. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malaria Cerebral/parasitología , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Malaria Falciparum/parasitología , Encéfalo/parasitología , Barrera Hematoencefálica , Citocinas/metabolismo
17.
PLoS One ; 17(8): e0272821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960935

RESUMEN

In Malaysia, soil-transmitted helminth (STH) infections still persist among indigenous communities. In the past, local studies have focused mostly on epidemiologic aspects of STH infections with a scarcity of information on the efficacy of deworming treatment. The present study consisted of 2 phases: a cross-sectional phase on current epidemiological status and risk factors of STH infections and a longitudinal study over 6 weeks on triple dose albendazole efficacy against STH infections. A total of 253 participants were recruited at baseline and a pre-tested questionnaire was administered to obtain information on socio-demographics, environmental and behavioural risk factors. Stool samples were evaluated using a modified Kato-Katz technique. Cure rate (CR) and egg reduction rate (ERR) were assessed at 3 weeks following a 3-day course of 400mg albendazole treatment and infection status were observed again at 6 weeks. Baseline positivity of trichuriasis, ascariasis and hookworm infections were 56.1%, 11.9% and 20.2%, respectively. Multivariate analysis showed age below 18 years old (P = 0.004), without latrine in house (P = 0.042) and indiscriminate defecation (P = 0.032) were associated with STH infections. In the longitudinal study (N = 89), CR for trichuriasis was 64.6%, while CR of 100% was observed for both ascariasis and hookworm. ERR was above 90% for all three STH species. A rapid increased of Trichuris trichiura egg output was observed at 6 weeks. In conclusion, STH infections are highly prevalent among indigenous communities. Children and teenagers, poor sanitation and hygiene behaviour were determinants for STH infections. Triple dose albendazole is found to be efficacious against Ascaris lumbricoides and hookworm infections but has moderate curative effect with high ERR against T. trichiura. Although triple dose albendazole regimen has logistic challenges and may not be a routine option, consideration of this treatment regime may still be necessary in selective communities to reduce high intensity of T. trichiura infection.


Asunto(s)
Antihelmínticos , Ascariasis , Helmintiasis , Infecciones por Uncinaria , Tricuriasis , Adolescente , Albendazol/farmacología , Albendazol/uso terapéutico , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Ascariasis/tratamiento farmacológico , Ascaris lumbricoides , Niño , Estudios Transversales , Heces , Helmintiasis/tratamiento farmacológico , Helmintiasis/epidemiología , Infecciones por Uncinaria/tratamiento farmacológico , Humanos , Estudios Longitudinales , Suelo , Tricuriasis/tratamiento farmacológico , Trichuris
18.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881802

RESUMEN

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Asunto(s)
Interacciones Huésped-Patógeno , Neutrófilos , Infecciones Estafilocócicas , Staphylococcus aureus , Bacteriemia/inmunología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/microbiología , Proteínas Citotóxicas Formadoras de Poros/genética , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus epidermidis/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Mucosal Immunol ; 15(6): 1224-1233, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732819

RESUMEN

Helminths have evolved sophisticated immune regulating mechanisms to prevent rejection by their mammalian host. Our understanding of how the human immune system responds to these parasites remains poor compared to mouse models of infection and this limits our ability to develop vaccines as well as harness their unique properties as therapeutic strategies against inflammatory disorders. Here, we review how recent studies on human challenge infections, self-infected individuals, travelers, and endemic populations have improved our understanding of human type 2 immunity and its effects on the microbiome. The heterogeneity of responses between individuals and the limited access to tissue samples beyond the peripheral blood are challenges that limit human studies on helminths, but also provide opportunities to transform our understanding of human immunology. Organoids and single-cell sequencing are exciting new tools for immunological analysis that may aid this pursuit. Learning about the genetic and immunological basis of resistance, tolerance, and pathogenesis to helminth infections may thus uncover mechanisms that can be utilized for therapeutic purposes.


Asunto(s)
Helmintiasis , Helmintos , Microbiota , Ratones , Animales , Humanos , Tolerancia Inmunológica , Inmunidad , Interacciones Huésped-Parásitos , Mamíferos
20.
Front Immunol ; 13: 869163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572520

RESUMEN

Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.


Asunto(s)
Helmintiasis , Helmintos , Parásitos , Animales , Interacciones Huésped-Parásitos/genética , Humanos , Inmunidad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...